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1. INTRODUCTION

Why do we need another paper on the estimation of point and mean

free-air gravity anomalies based on point gravity measurements? Isn't

this subject settled once and for all? We do have the omnipotent tool

called least-squares collocation, even with parameters.

These and others are typical questions and arguments of the seven-

ties, when the geodetic comm1unity became aware of and excited about the

existence of collocation. Some enthusiastic proponents (not its de-

signers, mind you) advertised it as the unique robot, which is capable

of making even the impossible come true; but unfortunately it doesn't.

Meanwhile the enthusiasm has been replaced by an "unbiased" recognition

of this sound and powerful tool; practical experience has shown what

could have been anticipated: a smooth and reliable output requires a

smooth, detailed and accurate input -the system's response is data-

specifc

[One of the many applications of least-squares collocation is the

prediction of point and mean gravity anomalies based on point gravity

anomalies - hardly any problem, as long as the terrain is flat withinI. the area of consideration. Free-air anomalies can be processed directly,
no data reduction seems to be necessary. If we approach the foothills

or even mountainous areas, the picture changes dramatically; suddenly

data reduction becomes indispensable, collocation results based on un-

reduced quantities become practically useless.

This report alms at an optimal estimation -of point and mean anoma-

lies taking into account the concept of a linear correlation between

terrain-corrected free-air anomalies and topographic height. Different

A
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estimation procedures are compared; particular emphasis is put on the

best possible estimation of the Bouguer-factor and the subsequent estima-

tion of Bouguer as well as free-air point and mean anomalies. Least-

squdres collocation with parameters presents itself as a very attractive

and powerful tool for the estimation of both regression parameters and

point and/or mean anomalies. An explanation for the regional variation

of the regression parameters, based on a simplified concept of isostatic

compensation is presented in chapter 4.

Particularly in mountainous areas the free-air anomalies used to

be reduced for the effect of the terrain, which can easily attain values

of 10-20 mgals and even more. !f an empirical covariance function is

estimated from unreduced free-air anomalies, the terrain effect causes

the variance to be too high and the correlation length to be too short.

Since the variance functions as a scale factor for the prediction error,

we see that the quality of anomaly prediction is worsened if unreduced

free-air anomalies are used. In addition, the correlation length controls

the quality of interpolation; a short ..orrelation length causes a large

prediction (interpolation) error; therefore, the prediction accuracy suf-

fers also from thi.i indirect effect (cf. SUnkel, 1981). The estimation

of the terrain effect is a very laborious task. It is shown in chapters

5 and 6 to depend linearly on the terrain variance and to be inverse

proportional with respect to wavelength and correlation length, respec-

tively. The total variance depends on the power spectrum; if the high

frequency part of the spectrum has much power, a high terrain samoling

rate (: detailed terrain model) is required in order to estimate the

variance with sufficient accuracy. The terrain correlation length plays

a fundamental role in the estimation of the mean terrain effect; a short



I 3f correlation length requires a high sampling rate. As a matter of fact,

these statistical quantities depend strongly on the terrain in consider-I ation; consequently, a globally valid sampling rate cannot bo given; in-

dividual circumstances con½ol its choice.
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2. MEAN FREE-AIR GRAVITY ANOMALIES

A free-air gravity anomaly is defined by

Agp " gp - YQ , (2,1)

with gp denoting the actual gravity at the point P located on the sur-

4 face of the earth, and yQ denoting the reference gravity at a correspond-

ing point Q located on the telluroid (Heiskanen & Moritz, 1967. p. 293).

By Ai we denote a mean value ol the free-air gravity anomaly,
1

Agp - Aoff Agp. dap' ; (2.2)
ACp

do stands for the element of solid angle, 4a is the averaging area in
consideration.

Point free-air anomalies are known to oscillate around a zero aver-

age with oscillation frequencies depending strongly on the topographical

features, they comprise regional and local gravity field information;

therefore, a point anomaly is in general not representative for a large

area; because of its local character and its strong dependence on topo-

graphy, it can only • poorly predicted if the topography is ignored

(this is particuiarly true for mountainous areas).

Averaging free-air anomalhes in order to obtain mean anomalies means

essentially averaging the local features of free-air anomalies; mean
E$

inomalies are representative for the averaging area in consideration;

they offer themselves for the evaluation of various integral formulas.

Appling the averaging process (2.2) we have to keep in mind tnat

the tree-air anomalies refer to ground level,

Agp =g (Opx"ph (ýpxp)) (2.3) I
I

-1
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(h(O,X) denotes the topography.) A straight mean like (2.2) is taken

with respect to the horizontal position (O,X); to which height does A4p

refer? Does it refer to a mean height?

In order to answer this question we introduce a mo:an height h by

;P . ff hP.Odap'.. (2.4)
Aap

Let us introduce a mean anomaly A*, which refers to the mean height

h; A* is a mean of point anomalies Ag*, which refer to the level h -

and are obtained by an anlytical continuation of the ground level anoma-

lies,

Ag* * Ag- . (h - h), (2.5a)

Ag- a P. (2.5b)

Denoting the average (2.2) by MJ , the mean anomaly referred to the

mean height becomes

Aj g h M' (2.6)

It is instructive to consider two special cases:

a) the trivial case of a flat topography within the area of averaging,

h = h; it is obvious that the last two terms of (2.6) cancel each

other, and

=§ Ag*

follows. The straigt mean of free-air anomalies refers to the mean

height.

b) the vertical gradient MAg/3h is constant within the area of averag-

ing, Ag/ah a M JZg/ahý . Aa-in, the last two terms of (2.6) can-

cel each other, and
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follows. The straight mean refers to the mean height.

The last case is of particular importance because it assumes a linear

relation (- exact functional dependence) between Ag and h. In reality,

local density anomalies, non-constant Rouguer-anomaltes (in the averaging

area), nearby topographic-irregularities, and other phenomena account

for the disturbance of an exact functional dependence; however, in gen-

eral we observe a linear correlation (approximate linear relation) be-

tween Ag and h, which becomes even more ponounced if Ag is "cieaned" from

topographical irregularities. We have hardly ever a sufficiently dense

gravity material which would allow a deternination of the vertical gra-

dient ef gravit+,; therefore, we simply have to assume that j
M I (h h

is zero, in other words, the straight mean of point anomalies A§ is inter- i

preted as Aj* and consequently, the reference height becomes the mean

height. In areas with flat topography the equality holds exactly.

I

i
i

i.1
I!
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3. PREDICTION OF ANOMALIES BY TREND REMOVAL

Adopting the concept of linear correlation between free-air anomaly

and topographic height, the anomaly can be represented by

Agp z a + bhp + Sp (3.1)

where a denotes a regional constant and s a residual anomaly; s comprises

all the effects which make Ag locally violate the linear functional re-

lations; the average of s is assumed to be zero,

MIs 1- 0. (3.2)

Then the average of the mean value reduced anomalies Agr

g a Agp - M fAg}

b (hp - Mhi ) + sp , (3.3)

vanishes, M jAgrj = 0

Introducing a reduced height hr,
hp = hp M h , (3.4)

the reduced anomaly is represented as
Ag = bhr + Sp . (33)-

If s is to be independent of elevation, it follows that the covariances

cov (Agr, hr) and coy (hr, h r) are proportional to each other for all

arguments with b being the factor of proportionality (Heiskanen & Moritz,

1967, p. 283 •.)

b =coy (Agr hr) (3.5)

cov (hr, hr)

Having selected a best-fitting b, the signal s can be predicted at any

other point by well-established least-squares prediction methods. A
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free air anomaly at a specific point Q at an elevation h is obtained

by

AgQ M IAg + b (hQ- Mh) +SQ (3.6)

or shortly

AgQ =a + bhQ + SQ (3.6a)ý

with a determined through

a = M I Ag - bM I h ) . (3.6b)"

At this point it should be stressed that the average M. ' s always

derived from a finite sample of data (free-air anomalies, topographic

heights); this fact will not cause any problems as long as the terrainI is sufficiently flat; (the average over a perfectly flat terrain is ob-

tained by a single data.) However, in mountainous areas the situation

is quite different: gravity measurements are usually performed along

main leveling lines which, in turn, almost exclusively coincide with main

roads running through valleys rather than on the top of the mcuntains.

Therefore, the estimate M I h I will tend to be too low, and since the

free-air anomalies are linearly correlated with height, the estimate

MI Ag I tends to be t*o low as well. The direct effect on the point F

anomaly prediction would be negligible provided the gravity gradient b is

sufficiently well determined. However, the estimation of b is poor if

the height range of the data is narrow. Therefore, sampling gravity and

corresponding height in valleys only will make point predictions very

inaccurate. A homogeneous sampling is therefore strongly recommended.

A mnr-n anomaly A§ can be derived immediately from (3.6),

Ag MIAgI + b (h- MIh ), (3.7)

.4..
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provided the average of the signal s vanishes. Again we observe that

the uncertainty of b enters directly in the uncertainty of the mean value.

Practical results (Uotila, 1967 a,b; SUnkel und Malits, 1981) indicate

that b can be estimated with an error ranging from 10O-3 to ±10-2 mgal/m;

therefore, a difference Ah - h - M I hl of a couple of hundred meters

(a case quite likely in mountainous areas) can contribute to the error

budget of Ag by a couple of mgals.

As far as the estimation of a and b is concerned, either a classical

least-squares fit (Uotila, 196, a,b) or a more demanding least-squares

collocation solution can be envisioned. The least-squares estimation

of the parameters a and b (trend model parameters) is performed by con-

sidering s as random noise. Denoting the parameter vector by X and the

design matrix by A,

X = (a, b) , r.. h1n

the best estimate of X is obtained by

= (A A)Y'AAg; (3.8)

its elements can easily be shown to equal

n rIn -a_ = M I Ag I - bM Ihr . (3.8)'n r 2
•

Y.. (hr)

J=1

The least-squares collocation solution differs from the simple least-

squares solution insofar as it also takes into account the statistical

behavior of the signal s (which is for sure not simply random noise),

expressed in terms of its covariance function. The best estimate of the

parameter vector X is now given by
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R (A1C-A) A'C'Ag (3.9)

where C denotes the covariance matrix of the vector of signals. There-

L fore, the two solutions will differ, if the individ,'•c' I '' are cor-

related.(C has non-vanishing off-diagonal elements.) It need not to

be mentioned that the collocation solution (3.9) is by far more expen-

sive than the least-squares solution (3.8), because it requires a) an

estimation of an empirical covariance function of the signal .' b) the

fit of an appropriate model to the empirical covariance function, c) the

calculation of [n (n-1)] /2 covariances, and d) the inversion of the co-

variance matrix. This is the price we have to pay for an optimal esti-

mate obtainable from the available data set. The price will be defi-

nitely too high if the correlation between the signals is very weak

(almost diagonal covariance matrix), it will be a good investment if
r3

the correlations are strong: practical studies have shown (SUnkel and

Malits, 1981) that the variance of the signal can be quite considerable

(easily reach 100 mgal and more); this variance enters unreduced into

the error estimate of the point anomaly if the simple least-squares con-

cept is applied, in the least-squares collocation method the predicted

signal is obtained from the centered da~a hy the well-known relation

the error covariance matrix Ess of the predicted signal vect, r s is given

by

Ess oarCss c mca-t I o A(AtCp'A)'dAictpraC" s (3.11)

the error covariance matrix of the predicted parameter vector by



Exx (A C'A)' (3.12)

(Moritz, 1930, p. 128). Equation (3.11) can be split up into three

terms,

Es = C- CsC + (ATC'Cs)fExx (A'C"lCs)

the first term represents the a priori error (covariance matrix) of the

estimated signal vjctor, the second term represents the accuracy gain

due to data, and the tbird term the contribution of the parameter inac-

curacies to the error of the estimated signal. As a general rule it

can be said that a strong signal variance, a small correlation length I

compared to the mean mutual distance between data, and a vague linear i

correlation between Ag and h will be responsible for poor signal ac-

curacies; a low variance, long correlation length, and a strong linear

correlation will keep the prediction error low. i
Any other free-air point gravity anomaly can be estimated through

Ago AOX + A o (3.13)

where A denotes the design vector corresponding to the prediction

pointQ,

A' = (1, ho) . (3.14)

The mean square estimation error is obtained by

A g A = A TExxA + A Exs + ExsAT + Ess (3.15a)

with the error cross covarlance matrix

Exs = -(A'-C'A)Y'A TC-Cs . (3.15b)
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Equation (3.13) enables us to estimate the mean free-air anomaly through

^ + ^o (3.16)

where A. denotes the mean of all vectors (3.14) which is obviously

=o (1, .)

The estimated mean anomaly refers to the mean height; if the mean of I
the signal vanishes, we obtain

Ag = § + b h (3.17)

as best linear unbiased estimate of the mean gravity anomaly. (Note

that it makes no difference if we take the mean of the surface anoma-

lies or the mean of the anomalies at mean height; this is because the

signal was supposed to be uncorrelated with height.) Formally (3.17)

is valid for both, the adjustment solution and the least-squares col-

location solution; however, the way the estimates e and b are obtained

is different.

The collocation solutiun is based on the covariance function of the

signal s; therefore, it would oe quite interesting to know which kind

of information is contained in s. According to its definition (3.1),

s is a kind of mean value reduced Bouguer anomaly with the parameter a

as the (constant) mean Bouguer anomaly in the area of consideration and

b the Bouguer factor which can be related to the mean density p by b =

2nGp (G is the gravitational constant). Since no terrain correction has

been taken into account in our model, the signal s will comprise es-

sentiilly 3 kinds of information:
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a) the variation of the Bouguer anomaly within the area of con-

sideration,

b) the terrain effect,

c) the effect of local and regional density anomalies.

Terrain corrected Bouguer anomalies Ag. are known to be very smooth and

correlated to a "mean" height h such that in average

Ag, = - 100 • Ekm) mgal (3.18)

(Heiskanen & Moritz, 1967, p. 328); the definition of "mean" is strongly

linked to the concept of isostasy which will be discussed in the next

chapter, If the terrain is rough, the behavior of the terrain correc-
tion will be similarly rough and high-frequent. Since no terrain cor-

rection has been applied, the signal s will have a long-wavelength Bouguer

anomaly characteristic superimposed by a short-wavelength terrain effect

characteristic; density anomalies will probably cover the whole spectrum

as far as its effect on the signal is concerned however, its power is

considered to be rather small compared to the Bouguer and terrain effect.

In moderately rough areas the terrain effect will be small and the

signal is essentially a Bouguer anomaly. It is true that Bouguer anoma-

lies are smooth (cd. (3.18)), but still they are hardly ever constant

in an area of say 10 x 10; its variation enters fully into the signal s.

What is the impact of the relation (3.18) on a determination of the para-

meter b by least-squares adjustment? Very simple, the value of b will

tend to decrease with increasing area of consideration. Why? As we

saw earlier, s is essentially a Bouguer anomaly which behaves accord-

ing to (3.18),
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s- Age + const, =-O..ih m) 3+ const.,

and consequently, the free-air anomaly is approximately given by

Agp= bho - O.Ihp + corst.,

and with homogenous density p 2.67 gcm-3

AgP= 0.1(h - h)p + const. (3.19)

Consider a region of 10 x 10, subdivide it into 9 subregions of size

20' x 20', and assume that the mean height h is constant within each

subregion, but changes from region to region (a sufficiently justified

assumption as shown in the next chapter); assume furthermore that dense

gravity material is available in the whole region. Under these assump-

tions we plot the free-air anomalies versus height for each sub-region

and should expect a correlation behavior which shows a parallel shift

from one sub-region to the next as illustrated in Figure 3.1 below. I
6g

ii Fig. 3.1 Correlation model between free-air

anomaly and topographic height.

I
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(note that the parallel shift is due to the different mean heights.) If

we perform a least-squares adjustment solution for the estimation of the

parameter b for the whole region, we will get a too small value b which

is indicated by the direction of the boldface arrow in Fig. 3.1. The

reasoning is very simple: the parallel shift is essentially the signal

s; in the adjustment procedure this signal is treated as random noise;

with other words, the adjustment soluticn is blind with respect to hori-

zontal position, it simply makes a mishmash of Ag with respect to h and

not of its gradient as it should.

In contrast to the adjustment solution, the least-squares colloca-

tion solution takes care of the signal very carefully; it uses all the

information contained in s, provided in terms of covariances, in order

to estimate a) a common gradient b and b) the signal field as such (equ.

(3.9), (3.10)). Therefore, a regional collocation solution will signi-

ficantly improve the estimation of b as compared to a regional adjustment

solution whenever a) the region is large, and b) the terrain is not flat.

It should be mentioned that Uotila (1967a,b) performed extensive

SI numerical studies in order to find an optimal procedure for the estima-

tion of a regionally valid parameter b. He finally came to the conclu-

sion that a resonable estimate can, in general, only be achieved if the [
region is subdivided into smaller subblocks; for each subblock a local

parameter b should be estimated by least-squares adjustment, the regional

value is obtained as an appropriate average of all local b - values.

His conclusions are in favorable agreement with ours; here a simple

explanation of this phenomenon has been provided. A n:;tiematically sound

reasoning will be attempted in chapter 4.
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Let us turn back to the signal and its statistical behavior. The

collocation estimdtion of the parameter vector (3.9) requires the know-

ledge of the signal's covariance function which we do not necessarily have

at hand; however, if a sufficiently large numoer of data is availabie

within the considered region, we can proceed iteratively: we chose the

standard value b 0.112 as starting parameter, obtain the signal at

the data points by

s, Ag, - M I ag - bo (h, - M ( h}), (3.20)

calculate an empirical covariance function. and fit an appropriate model

covariance function which is used in the estimation of the parameter

vector. If necessary (hardly ever it is) we can determine better esti-

mates of the signal and so forth. By far the most expensive part in the

least-squares collocation solution remains the calculation of the indivi-

dual covariances and the inversion of the covariance matrix.

The least-squares collocation solution presented here was based on

the very essential and restricting assumption that free-air anomalies

and elevations are linearly correlated; in other words, we have assumed

that the covarian¢• functions cov(Agr, hr) and cov(hr, hr) are propor-

tional for all arguments, a condition which was imposed in order to render

the signal s independent of elevation. However, if this condition is

intolerably violated, a more general approach has to be aimed at, In a

very early paper Moritz (1963) has laid down the basic formulas which

express the optimally predicted centered free-air anomaly in terms of

a linar combination of centered free-air anomalies and centered eleva-

tions, The predicted quantity is given by the familiar expression

Ag- C7c"i (3.21)

L -



In this context Z denotes the vector

r r r r rT u(A g, A ,...,Agh, ,h 2 , ... ,h h);
r

note that the elevation h, of the prediction point is an element of the

"data" vector. This peculiar case deserves some attention: the free-

air anomaly is a function of horizontal and vertical position; its re-

striction to the surface of the earth is characterized by (2.3). A

linear predictor has to represent Ag in terms of

Ag r gr + ehr + yphr (3.22)

with coefficients a., . and Yp independent of elevation. Since hr is

correlated with Agr, the minimization of the prediction error leads to

a linear system which consists of covariances between data (usual case)

and covariances between the elevation at the prediction point and all

data. Therefore, we obtain a covariance matrix which can be partitioned

into 4 blocks,

LcT c,2 3I

with the prediction-point-independent (data, data) covariance matrix C1

and the variance of centered haights C3 , and the prediction-point-dependent

block C2 which is a vector of covariances between the height at the pre-

diction point and all data. When we are talking about "data", we have

th', set

(,grr ; r r r

in mi rd.

[I=.
LI|



Here we see already the drawback of this general and optimal pre-

dlctioii method:

A) We need to know

a) the autocovariance function of free-air anomalies cov(Agr, gr),

b) the autocovariance function of the topography coy (hrhr),

c) the crosscovariance function of free-air anomaly and topography;

B) Each prediction requires the calculation and inversion of a co-

variance matrix which, in contrast to usual least-squares predic-

tion problems, changes with the horizontal position of the predic-

tion point; (the covariance matrix is invariant with respect to the

vertical position of the prediction point only, but not with respect

to its horizontal position.)

As a matter of fact, this peculiar property of the covariance matrix

makes predictions more expensive, however, not as much as one would expect
from a first glance, for the following reason: the block C1 is invariant

with respect to the location of the prediction point and, therefore, C1
has to be inverted only once and for all. The remaining parts of the I

inverse covariance matrix can be obtained by a simple block-partitioning

(c6. Faddeeva, 1959, § 14):

'C BI1 B21
2= [ B B3

with B3 = 1/(C 3 - CCC)" (3.23)

wit 2- C' C2

B1 = C+ B2BT/B •

- -



19

Assuming n data given (1 data consists sf Agr and the corresponding hr),

C1 has dimension 2n x 2n, C2 has dimension 2n x 1, and C3 is a constant.

Observing (3.23) we conclude that on the order of 8n 2 basic operations

(multiplication + addition) are required for the calculation of the full

inverse covariance matrix provided that C;1 is alrerdy available. In

viaw of the fact that the calculation of C71 requires on the order of 8n 3

basic operations, we conclude that the prediction of n anomalies is just

twice as expensive as the calculation of C71 (which is approximately equal

to the prediction of a single point anomaly). Therefore, the dependence

of the covariance matrix on the horizontal location of the prediction

point will not blow up the computation time too much and cannot be con-

sidered a severe limitation. There are much stronger arguments which do

not speak in favor of this "optimal" solution.

Let us compare the collocation solution, which assumes linear cor-

relation between Ag and h, with the collocation solution based Gn a

rather a,-bitrary correlation behavior. The solution (3.10) requires

the estimation of a single covariance function, its fit by an appropriate

model, the calculation of about n2/2 covariances, and the inversion of aI-. n x n symmetric and positive definite matrix if n gravity anomalies are

processed. The general method requires the estimation of 3 times more

covariance functions, their fit by appropriate models, the calculation

of about 4 times more covariances and 8 times more basic operations for

the calculation of the inverse covariance matrix. Therefore, it seems

to be on the order of 5 times more expensive than the collocation

solution based on the linear correlation model. Particularly trouble-

some seems to be the estimation of cov(Agr,hr) and cov(hr,hr) because
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of the generally lacking data density, particularly in mountainos areas,

where there would be a real need for. For these reasons, it is rather

questionable if the optitral solution for the general case differs signi-

ficantly from the linear correlation solution (if a linear correlation

exists, both solutions are identical), and if a small improvement of the

solution Justifies the very high price to be paid.

The following Table summarizes rm s - prediction errors of mean free-

air anomalies, depending on the data density and the correlation length

( of the covariance function; a variance of 100 mgal 2 has been used. The

data are assumed to he regularly distributed error-free point gravity

anomalies. A data density of N means N data/blocks.

The figures in Table 3.1 do not include the error introduced by the

inaccuracies of the trend model parameters a and b; they can contribute

to the total error budget up to 2 - 3 mgal (SUnkel and Malits, 1981);

a typical error estimate of a is - 1.5 mgal, a typical error estimate

of b is ±-0.002 mgal/m. Note that the variance of 100 mgal 2 has been

chosen rather arbitarily; the figures can easily be scaled by the proper

variance.

,Now,".5 ....



21

correlation length • (km)

N 20 30 40 50 60

1 0.5 0.3 0.2 0.10
5_x 5 'x5S4 0.1

1 1.6 0.9 0.5 0.4 0.3

4 0.3 0.2 0.1 10 X ,J
L

1 2.6 1.6 1.1 0.7 0.5

4 0.5 0.3 0.2 0.2 0.1 15" x 15"

9 0.1

S1 3.8 3.2 2.6 2.0 1.6

S4 1.4 0.8 0.5 0.3 0.3 •
9 0.5 0.2 0.1 30" x 30'

16 0.2 0.,

1 3.6 3.9 3,8 3.6 3.2

S4 2.4 1.9 1.4 1.0 0.8

9 1.3 0.8 0.5 0.3 0.2 10 x 10

16 0.7 0.3 0,2 0.1 0.1

25 0.4 0.2 0.1
fJ

Table 3.1 Mean free-air anomaly rms - prediction errors (regal), depend-
ing on the data density N - number of datalblock) and on thecorrelation length •; common variance: 100 mgal 2 .

t I
:o I
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The results summarized in Table 3.1 are graphically represented in Fig.

3.2 a-e. The contours are lines of constant mean free-air anomaly predic-

tion error dependent upon the correlation length ý (horizontal axis) and

t~he data density (vertical axi.. Note that these estimates refer to the

ideal situation of regularly distributed and error-free data having a

variance of 100 mga12 ;

9-

• 4 -. O. oso""

4 J "• ~0,

(a) 5'x 5x

20 30 40 50

correlation lenqth (km)

9 -

Q.,-O

1 - ~'(b) 10- x 10-

20 30 40 50

correlation length (kin)
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9
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00 (c) 15' x 15'

20 30 140 50
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00
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3 So (d) 30' x 30'

20 30 410 50 60

correlation length (kmn)
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O4.

3.so (e) x 10

20 30 40 50 60

correlation length (km)

Fig. 3,2 a-e Lines of constanL rms mean anomaly prediction
error, depending on the correlation length and
the data density; variance: 100 mgal 2

As a matter of fact the estimates obtained here have to be scaled accord-

ing to the individual variance. The variance can considerably differ

between various areas; this is why, as a kind of normalizing factor, a

common 100 mgal 2 variance has been assumed. E.g. the mean residual var-

iance for a 10 x I1 area is of the order of 900 mgal 2 (total variance

minus variance of 10 x 10 mean anomalies); therefore, the values of Fig.

3.2e should (in average) be multipFliiý by a factor 3. All values refer
to the covariance modet of Hirvonen C(s) = Co/[1+(s/I)z]; for the

2s2

Gaussian covariance model C(s) = Coe" we obtained estimates which

are about 50% lower for 5' x 50 mean values and 15% lower for 10 x 1

these lower estimates are due to the stronger correlation of the

G-Iussian model, compared to the Hirvonen model, for small distances; the

covariance function's behavior for small distances is controlled by its

curvature parameter at the origin; therefore, highly reliable prediction

and pr".diction error estimates should be based on a covariance model which

resembles all three essential parameters, the variance, the correlation

length and the variance of horizontal gradients.

I
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4. The b = const. - PROBLEM and ISOSTASY

In chapter 3 basically three methods for the prediction of free-

air anomalies have been presented. Two of them assumed a linear cor-

relation between free-air anomalies and elevations, represented by the

correlation coefficient b. In least-squares adjustment determinations

of b (equ. (3.8)') , it has been observed (Uotila, 1967 a,b) that Ibi

tends to decrease if the area, for which it is considered constant,

k increases. A simple explanation of this phenomenon has been provided;

it was based on the assumption that the value of the Bouguer anomaly is

approximately proportionil to a "mean" height. It has been anticipated

that the way of takirg the mean of the topography is closely linked to

the concept of isostasy. In this chapter we make the attempt to obtain

a mathematical relation between the area size (of b considered constant),

statistical characteristics of the topography, and the error to be ex-

pected in b due to the b = const. assumption.

Moritz (1969) has shown by means ef a simplified model of isostasy,

that the linear correlation between free-air anomalies and topographic

elevations can be explained in a very simple way. Representing the

compensated masses by a surface layer at the depth D below sea level,

he finally arrives, after some minor neglections, at a relation which

expresses the free-air anomaly in terms of the corresponding point

height, the corresponding mean height, and the topographic correction,

AgI = 21TGp (ho - W,) - C, , (4.1)

L __



26

ip .. elevation of the point

mean elevation corresponding to P,

CP ... topographical correction,

Sp ... density,

G ... gravltational constant.

(Note that for this model the Bouguer anomalies are given by -7iTGpfi,,

the Isostatic anomalies vanish.)

The mean height •, is represented in terms of the output of a linear

system witi input h,

=(PI R D. do (Q) (4.2)

with X, denoting the distance between the point P0 (located at sea level,

orthogonal projection of the surface point P) and Q (located on the

compensation surface at depth D below sea level); R denotes the mean

radius of the earth. In the spectral domain the mean height spectrum

i,, is related to the point h,.ight spectrum h,, through

W O,. = ,i,. , (4.3)

where , is the n'th degree eigenvalue of the integral kernel K of (4.2),

K(P.Q): (. 1 (4.4)

According to the Funck-Hecke formula (MUller, 1966, p. 20),
. 2 I
K,= 2.r JK(t)P. (t)dt; (4.5)

-i
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(P. is the Legendre polynomial of degree n.) Introducing (4.4) in (4.5),

K, is expressed by
K * 1

. - RIDf P.W dt (4.5)'
-1

x, as the distance between Po and Q is given by

k,= Rz + (R-D) 2 - 2R (R-D)cos,

and 1/1! by

1 1
= - (1 + 012- 2 tt) (4.6a)

with : 1 - t: =cos'p. (4.6b)R

The expression (4.6a) can be represented in terms of a series of Legendre

polynomials (Heiskanen & Moritz, 1967, p. 35),

•T "R'(I ) • (2n + 1) P. (cosp) . (4.:')

m=O

Now it is fairly easy to derive the eigenvalues K,; observing the ortho-

gonality relation of Legendre polynomials expressed through

2i (t) P. (t) dt= -- (a
2n+T

-1

(6,. denotes the Kronecker symbol), we obtain with (4.5) and (4.7)

21" (4.8) K



28

expressing cby (4.6b) we obtain

= (4.8)"

In order to better understand the impact of these eigenvalues, let us

consider two extreme cases:

a) D - 0 (compensation level coincides with sea level): in this case

both the isostatic and the Bouguer anomalbes should be identically

zero according to our model (4.1). In other words, h = h - no

smoothing is envolved. In terms of the spectrum this means that

= h.,,, therefore all K. must be identically 1. This condition

is obviously fulfilled by the eigenvalues (4.8)'.

b) D R (compensation "level" coincides with the center of the sphere):

in this case the isostatic compensation degenerates, such that the

mean height becomes independent on point position and, therefore,

a constant. As a consequence only the zero degree eigenvalue has

to be equal to one (it passes tht operator undisturbed) , all other

eigenvalues must be zero (annihilation of all frequencies higher

than zero). Thi; c.orndition is also fulfilled by the eigenvalues

(4.8) .

In other' words, (a) represpnts an extreme case of a high-pass filter, (b)

an extreme case of a low-pass filter. Our isostatic model as well as the

:3ctual isostatic compensation will be located somewhere in between (a)

and (b). The following graph presents the behavior of the eigenvalues

•. for th •e generally discussed and used compensation depths, D 24,

32, and 40 km.

I
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1.00

0.75

S~ D = 24 km

0o.50 -D/ = 32 km
S/D = 40 km

II
4,4

0.25

0.00-
0 250 500 750 1000 1250 1500

degree n

Fig. 4.1 Eigenvalues K. of topography - smoothing
operator.
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Let now the topography be given in terms of a series of normalized

harmonics ,

h(,) ham Ono (,1. (4.9a)
a,.

then the corresponding smoothed topography is obtained through

•() Z K.h.. 0b.. (P) (4.9b)

and the residual topography Ah - h -

Ah(P) ,.(1-K.)h.. Ob..(P). (4.9c)

The corresponding autocovariance functions of h, •, and Ah are given by

cov(h,h) = h. P, (cos*) (4.10a)

cov(WW) = . h.P. (cosp) (4.10b)
,R>O~l

cov(AhAh) = • (l-K.) 2 h.P. (cosUp) (4.10c)

a> a

with the degree variance_ h. : h2a..

The behavior of (1-•..)2 for three compensation depths is shown in Fig.

4.2. The energy in the low frequency part is dampened because the low

frequency content of h and h is almost the same. The energy in the high

frequencies, however, is hardly reduced since W has hardly any power in

the high frequencies. The deeper the compensation level, the more energy

remains from the high frequent part.

:•' •-- • 1 " " "•I= • "' '
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Fig. 4.2 Energy dampening factor for residual height.

What we are primarily concerned about, is the b = const. -problem.

Considering again the ideal case of homogeneous density and terrain-

corrected free-air anomalies, we conclude from the model (4.1) that b

is constant if the mean height, as defined by (4 2), is used. However,

in practical determinations of b, valid for a specific area, a constant

mean height is used. In gneral, ý as defined by (4.2) is not constant

over a limited area such as 1 0 x 1 0. The error which we conmmit by us-

A ~ing a constant mean height instead of a variable mean height W' enters
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fully in the determination of b. Denoting the constant height of a speci-

fic region by F and 2wGp by bo, the factor b, as determined by a least-

squares adjustment (equ. (3.8)'), is obtained by

b h t,' - (4.11)

Tht h'r

where h' and Ag" denote the vectors of residual elevation and (terrain

corrected) free-air anomalies,

Agr: = (Ag4-i4,AgA2 -E, ... , AG.-&-g).

According to our assumption, the mean anomaly Eig is given by

g- bo (4.12)

and therefore, the reduced anomalies can be represented by

Ag" = bo(h - •) - bo(h - i)

= bo(h - T - b,(W - W)

0o n' - boh . (4.13)

Introducing this relation .ntu (4.11), the error 6b b - bo is given

by

h h

and, ,, th the triangle inequality ja bli<__aI bi, we obtain an estimate

16 bI.l bo (4.14)fhfj "
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From (4.13) it is obvious that the error S3b vanishes if the size of the

area, for whtch W and Sg are constant, goes to zero. Vice versa, 6b will

increase with increasing area size. Equation (4.14) shows that 6Sb is

proportional to the rm s variation of the residual mean~ elevation as

defined by (4.2), and indirect proportional to the -m s variation of the

residual elevation. Therefore, an estimate of b for small blocks in i
mountainous areas should give small estimation errors, provided our model

is correct and the data distribution is sufficiently homogeneous and

dense. Poor estimates have to be expected for large blocks in flat areas.

Both phenomena have been strongly confirmed by practical determinations

of b (Uotila, 1967a,b; SUnkel and Malits, 1981).I The mean elevation h is defined as a weighted average of the ele-

vation h with distance-dependent weights; W~(P) is a smooth surface.

This smooth surface, however, is approximated by a step function Win

all practical applications. As we have seen above, the variation of

with respect to a constant is responsible for the error in 6Sb, provided

our model is valid; the block size is closely related to the error 6Sb.

LI Since we shall hardly ever work with a mean surface W but rather with~

we are interested in the effect of 6b, caused by the replacement of i
by h. We will again consider Faye - anomalies (terrain corrected free-

air anomalies) which are linearly related to the elevation h,

69g be(h -~

I if we replace h by Tiwe make b variable (bo is a global constant) and

dependent on position,

ag =b (h -
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The right hand sides of both equations havi to be equal for all points,

and we obtain the condition 1
bo(h -') * b(h -F). (4.15)

Splttting b up into b = bo - db and adding zero to the right hand side,

we obtain

bo(h - = (ba - Sb)(h + ÷ - I
and-consequently

6b(h -ii) - bo(h -i). (4.15)-

(Note that Sb, h, • are variable, R is constant.) If b is determinin

by means of least-squares adjustment with parameters, the function

6b(h - T) is considered as noise; in our model this noise is represented

by the difference between the mean elevation surface and the constant

F. Note that in the least-squares collocation solution bo(W - F) is

treated as a signal, but not as noise. As a matter of fact, the power

of this noise is a measire for the error of estimation of b in the least-

squares adjustment concept.

In the sequel we shall investigate the average deviation of F from

i'. T•'e Jerivations are Particularly simplified if F is considered as

the mean elevation over a circular region and, moreover, if h is consid-

ered as •he output of a rmoving average applied to the actual topography

h. These two simplifying assumptions do not quite reflect reality, but

the a,'-,atage of working with the concept of isotropy justifies this

fenmal inaccuracy.

KW
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The moving average Ii of h, taken over a circular cap with radius ]
Po, can be expressed by

or(t)he Bnhnm~nm(P) (4.16)
ntm

for the same reason and in the same way as h was exp-essed by (4.9b).

In this context an are the eigenvalues of an isotropic moving average

operator with an integral kernel B(t; to) defined by

) 2r(-to) for to0 1t.1(S~B(t) ="(4.17)

else

(t denotes the cosine of the spherical distance.) The eigenvalues

are obtained through

L f
8n(to) = f Pn(t) dt.

to

F The following expression can be found in (Meissl, 1971, p. 24):

n o(to) 2 n I [ P n(to) - Pn+i(to)]; (4.J8a)

Sjbberg (1980) has recently derived a quite attractive recurrence rela-

tion which does not require the computation of the Legendre polynomials:

n(tO) =• 1 (2n-1)tOan08 (t 0 )- (n-2)8n2 (to) , n.2

with 1o = 1 and B1(to) = (l+to). (4.18b)

With (4.9b) and (4.16), the relative error 6b/bo (equ. (4.15)) can

be represented by

[
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~b(P) ~ (Kn-$n)hnm~nm(P)(41)dbP ~ (4. 15)Ibo 2: (1_Bn)hnm~nm(P)

n,m

SIt is obvious that 6b vanishes if K n=an for all n. Due to the different

behavior of icn and nthis condition is only fulfilled in the extreme

S~cases of

a) D = 0 and •o=0,

b) D = R and •

For all other realistic situations like D=24, 32, or 40 km as discussed

here, Bn will in general be different from K n; therefore, b will not

vanish. The variance of

Y,•(Kn-$n)hnm ne,

n,m

given by '(K n-an) hn (4.19)
n

is obviously a measure for the mean square value of Db. Therefore, the

S~goal is to minimize (4.19) which can be achieved by selecting, for each

bcompensation depths 0, an appropriate cap radius f e. However, theme

optimal relation between D and io is influenced by the actual degree

variances of the topography. This means that we have to know the degree

variances hn of the topography, Rapp (1981) has recently detemined the

degree variances of rock topography for nf180 based on a 1 x o mean

elevation data set. They can be used in (4.16) to represent the energy

which is rontained in the long-to-medium wavelengths of the topography.

Higher degree variances have to be obtained from a degree variance model.

Since the author is not aware o b existence of an appropriate model,



37

another way has been chosen: In the medium frequency range the actually

"observed" free-air gravity anomaly degree variances and the correspond-

ing ones derived from topographic data agree fairly well; this agreement

should be even better in the high frequency range beca',se of the strong

linear correlation between gravity and elevation. %erefore, it was

quite natural to use this source of information as topographical height

degree variance model for medium to high frequencies.

Two gravity anomaly degree variance models which fit real world

gravity data best (potential coefficients to degree 180 based on a com-

plete set of Io x 10 mean free-air anomalies, an observed variance of

1800 mgal 2 , and a variance of the horizontal gravity gradient of 800 E2 ), I
are two parameter models suggested by Moritz (1977), numerically investi- j
gated by Jekeli (1978) and Rapp (1979). Both models have the form

n+2fn+2
Cn (n-i)_ + O1 + (4.20)jn+A, (n'-2)tn+A2)(420

and are determined by 6 parameters each. '"Case One" model of Rapp (1979)

gives the best overall fit to the data, "Case Two" model fits the observed

degree variances best.
I)

model ctifmgal 2] 012 [mgal21 01 C2 A, A2

"Case One" 3.4050 140.03 .998006 .914232 1 2

"Case Two" 14.966 999.25 .987969 .850000 75 20

Table 4.1 Used "best" degree vZriance model parameters,
from Rapp (1979), p. 15.[

• - . ... .... . . . . , ,, I II
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For a linear correlation model between gravity and [levation with the
Bouguer-factor 2TrGp = 0,112 mgal/m, the relation beLu:->,,n the degree

variances hn (elevation) and cn (gravity) is given by

h:: (2•GQ)'((4.21)

Figures 4.3a,b show the degree variances of observed rock topography up

to degree 180, and such ones derived from Rapp's "Case One & Two" gravity

anomaly degree variance models for n>180.

observed rock topography

D =24 kmn, Case One - model
D = 32 km, Case One - model
D = 40 kin, Case One - model

100 D = 50 km, Case One - model

C_

...

SI0-

0 250 500 750

degree n

Fig. 4.3a Observed (n.j180) and from (4.20) and (4.21) 
A

derived (n>180) rock topography degree variances
("Case One" modl) based on various compensa-ti on depths.
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1000-

observed rock topography
D = 24 kin, Case Two - model
D = 32 kin, Case Two - model
D = 40 km, Case Two - model
ID = 50 kin, Case TIwo - model

100

. . .

0 250 500 750

degree n

Fig. 4.3b Observed (n <180) and from (4.20) and (4.21)
derived (n>180) rock topography degree variancei
("Case Two"-model) based on various compensation
depths.

It is obvious from the abovw two figures that the "Case Two"-model has

much less power in the high frequency part than the "Case One"-model.

"Case One"-model matches the trend obviously much better; the 50 km

compensation depths seems to be optimal for the "Case One" model, 32

km for the "Case Two"-model.
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The contribution of each degree variance to (4.19) is weighted by

(Kn-an)2. These weights are graphically represented in Figures 4.4a-c

for various compensation depths and cap sizes. Needless to say, the

zero 'line corresponds to the ntver talfilled l-eal ,ase &n = an, nn'

The following conclusions can be drawn from these figures: The weights

depend strongly on the assumed compensation depth; for the cases con-

sidered here (D=24,32, and 40 kin), the cape sizes po=15' and Po=20 can

be ruled out because of their too large deviation from the ideal case;

for the generally adopted compensation depth 0D32 km the overall weight

minimum is somewhere around t4o=30' to 60'. The weights are significantly

different from zero, up to degree n=750 which corresponds to a wavelength

of about 50 km; high-frequent variations (n>750) of the topography are

obviously very similarly averaged by (4.2) and (4.17); very low-frequent I
variations (n<36) are similarly averaged by (4.2) and (4.17) alike; the

difference between Kn and an is strongest in the medium-frequency range.L1
I

I

Fi
Fq

I
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Since (4,16) does not only depend on Kn and ýn but also on hn, it is

particularly important to have a good estimate for medium-degree rock

topography degree variances available. Observed rock topography degree

variances up to degree 180 were available to the autho,'; due to the

excellent correspondence between observed and anomaly-deriv.ed degree

variances for n 120 to 180, particularly for the "Case One"-model of

Rapp (1979), it was decided to use this model as a representative one

for dt ees n>180. With this data we computed first the L2-norm of

bo II = I<,5b, h Ihz> (4.22)

with hf f1 dcy 4j1

6'

for various compensation depths D and cap radii ýa. Naturally, the norm

depends on D as well as on o; for the optimal choice of %o, corresponding

to a prescribed D, the norm depends strongly on io, but weakly on D, and

assumes values between 8 and 11 mgal; (this corresponds to a minimum rms

difference between W and F of some 70 to 100 meters.) The 8 mgal value

has been obtained for D=24 km, the "Case Two"- model and a cap radius

of to=45'. Due to Schwarz' inequality we are able to estimate a globally

valid lower bound of the error 6b through

SII
116b 11 b o . (4.23)

IIh- 11

For the optimal choice of 'o, corresponding to a prescribed compensation

depth D, the lower bound of116 b b1 is practically constant and equals

3.0.10-2 which is 30% of the normal Bouguer factor. Those optimal values

have been obtained for D=24 km, •0-40' down to D=40 km, ý 0=110' and the
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Fig. 4 .4(a-c) Weights per degree for various cormpensazio. 4!epths Doandvarious choices of the rap size (fadius •:, R
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"Case One"- model. The graphs tn Figs, 4.5 and 4.6 show boll W-I 11 and

1I &b ji as defined by (4.23) dependent on various compensation depths

and cap sizes, for both the "Case One" and the "Case Two" - model.

aI

gI

F
)\D= 32 Ian

D 40 km

rISD= 50 km

"-I0 Case One - model (n > 180)

rI

30 60 90 120

*o(arcmin)

;. 4.5a r ms values of Mg caused by h*h.

iL

[:I
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20 ,

[

D= 32 km

D= 40 km

D = 50 km

. 10

10I

Case Two - model (ai> 180)

0 30 6 90 120

io(arcmin)

Fig. 4.5b rms value of 6Ag caused by h*h.

S....



45
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Fig. 4.6a Lower bound estimates of 11 Sbjj
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Fig. 4.6 b Lower bound estimates of 116 bli
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In the previous investigation of the error in b, caused by a replacement

of h by h, only the global case has been considered. Therefore, the

optimal estimates for Ilk should be interpreted with this reservation.

Local optimal 'Po - values can be considerably smaller; therefore, the

Po-estimates represent rather upper limits. Best local estimates de-

pend on the individual situation; they could be obtained on the basis

of a detailed digital terrain model.

L ~Sunmmarizing we can say that large deviations of b from the normal

Bouguer gradient of 0.112 mgal/m can be expected if b is determined for

a large block by least-squares adjustment. and in addition, if the Bouguer

anomaly is not constant within the block. Using a simplified concept

F ~of isostatic compensation, we could give a very simple mathematical ex-

planation for this phenomena. If the least-squares adjustment concept

is used for the estimation of b, the selection of an appropriate block

size should be done very carefully. In general it is much better to

choose a too small block size than a too large one; this is particularly

true for mountainous areas. The least-squares collocation determination

of b is quite insensitive with respect to the choice of the block size

because it takes into account the variation of the Bouguer - anomaly

within the block. Therefore, it is a very good advise to estimate b using

I the method of least-squares collocation with parameters, particularly

in areas with sparse data coverage. In addition, collocation allows at

the same time the estimation of the Bouguer anomaly field and even the

prediction of surface free-air point and mean anomalies together with

their accuracies. The author is not aware of any other nearly as

powerful existing method.
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5. THE TERRAIN EFFECT ON POINT ANOMALIES

The natural goal of estimation problems is to keep the error of

estimation as small as possible, Least-squares interpolation, in parti-

cular, is sensitive with respect to the statistical properties of the

field to be estimated, expressed in terms of a (usually) isotropic and

homogeneous covariance function. The interpolation error depends strongly

on a) the variance Co and b) on the ratio r correlation length/data

spacing (SUnkel, 1981). A small interpolation error is achieved by a

small Co and a large r. Therefore, any data reduction process, which

decreases the variance and increases the correlation length, has to be

favorably considered. It is common sense that the irregularities of the

topography account significantly in the power of first and higher order

derivatives of the gravitational field. In particular, the free-air

anomaly's high-frequent variation comes primarily from the influence of

the topography. In other words, the topography makes Co increase and
the correlation length decrease. [his is why predictions in mountainous

areas, based on unr.dc,,'cd free-air gravity field quantities, give poor

accuracies. If t•e want to achieve high prediction accuracy, we have

only two a'ternatives: do manruwer-consuming expensive fi-ld work and

collect more data Just tn make r increase, or reduce the data for the

influence of the topography. Needless to say, plain mortal geodesists

prefer the latter.

In linear and planar approximation the topographic correction of

grav'.ty at a surface point P is given by (Moritz, 1969, p. 10)

iA
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C, - ½ GPRaff(hhPldo (5-1)

0

with Loa 2R sin */2, Since the integral kernel to- drops rapidly to

zero, only a very small region, centered at the computation point P, has

to be considered for the evaluation of (5.1); therefore, it is legiti-

mate to formally replace the sphere by its tangential plane at P.

In the following we shall investigate how detailed topographic

information has to be made available in order to meet certain accuracy

requirements. Let us first investigate the critical zone in the neighbor-

hood of the computation point P. Following Heiskanen & Moritz (1967,

p.1216.), we represent the topography around P in terms of a Taylor

series,

h(s,a) - hp + s(hx cosCL + hy sinc) + ... ; (5.2)

here s and ct denote the planar distance and the azimuth, x and y are

cartesian coordinates. Then (5.1) is represented by

21, So

6CP 1iGP fL -3iaLh si.ds da

a=o S=ao

and with (5.2) we obtain, neglecting higher order terms,

6C, = ½ Go J (h2 cos*h+ hyI sin% W+ 2hxhy sincn cosa)dsdc.

c=o S=o

Due to the orthogonality relations of trigonometric functions, this ex-

pression reduces to the simple form

A. L
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SCm TrGPso½(hx + hg). (5.3)

Consider e.g, a small zone with a radius s, = 300 m and a moderate slope

of 200 only, the terrain correction wil. assume a ialue of about 1 rngal.

SConsequently, the resolution of the used terrain model has to be very

high in the neighborhood of the calculation point, unless P is located

on a "flat spot" of the terrain.

In order to study the response of C to the terrain, we need terrain

models. However, the choice of a proper terrain model is a very delicate

problem. To some degree it can be anticipated that C will be relatively

insensitive with respect to high-frequent, and sensitive with respect to

medium-frequent topographic variations. As a matter of fact, C should

depend somehow on the power of those variations. For the sake of sim-

plicity we choose a very simple but instructive topographic model: an

isotropic model represented by

h(s) = h0 cosw s, (5.4)

centered at thp computation point P; (note that hp = ho.) The model

looks quite unnat.rO, but it isn't: imagine a gravity station either

on a top of a mountain surrounded (.y (circular) mountain chains of com-

parable hteight which are separated by valleys, or - numerically equivalent-

a gravity station in a valley surrounded by mountain chains and other

valleys. The only unlikely structure in our model is the circular sym-

metry, constant amplitude and frequency. However, in order to study the

influ.-> e of topography on gravity, sacrifices have to be made resulting

in simple structures.

'3
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WIth (5,4) the topographic correction (5.1) is given by

C : •Gp hf 2oo~ (5.5iG o cs w 1 ds. (5.5)

S-S

(The integration over the azimuth has already been performed.) According

tn Ryshik and Gradstein (1963, p. 114, No. 2.523; p. 115, No. 2.526) the

integral in (5.5) assumes the form

C CO CO

2ds22( sinS ds- sin2us ds

S=O 'S=O S=O ,j

+ 2 cosws - 1 cos 2 ws-- ]
S=O

The second expression .can easily be shown to vanish by a Taylor ser-

ies evaluation at s=O. Considering

F if

px 2p
0 

J

(Ryshik and Gradstein, 1963, p. 169, No. 3.522), the first expression

(.) assumes the simple form ir/4w; with w 2=i/N (X ... wave-length),

the topographic correction (5.5) is given by

o = 9G h (5.5) "
x 

" 
o

G

I
1i]
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This remarkably simple result for the equally simple model deserves a

discussion: Let us first reflect about its validity. Formula (5.1)

represents the linear term of a series expansion of the topographic

correction in planar approximatior with respect to [(h-h•)/Zo] 2 , which

essentially represents the square of the tangent of the elevation angle

S of a variable terrain point with respect to P, tan2 . The series

obviously converges if ISI< 450; therefore, equations (5.1) as well as

(5.5)'are valid approximations for moderate terrain only with tan2 a

significantly smaller than 1. In terms of the wavelength A of our

model, this translates into A> 4ho; in order to be absolutely save, we

should rather write

I
C = 9 Gp h , A 4ho . (5.5)"

C vanishes if A-* as it should be. The most important result (at

least for the model considered here) can be summarized as follows:

The topographic correction is prcportional to the square of the

V ,amplitude ho (and consequently linearly dependent on the variance of

the topography), z:- i inverse proportional to the wavelength X of the

topography, provided A o4h0 .

The following Table S.1 Ahows C for our model, dependent on various

choices of ho and X.
/
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100 1000 5000 10000
h0 o(m _ _ _ _ _ _ _

10 0.55 0.05 0.01 <0.01

100 5.5 1.1 0.55

500 27.6 13.8

1000 55.2

Table 5.1 Topographic correction (mgal) dependent
on amplitude ho and wavelength X.

The figures obtained with our simple moeol agree remarkably well with real

world observations; cf. Heiskanen and Vening Meinesz (1958, p. 154). (Note,

for example, that the figure in the last line and last column corresponds

to the situation of a mountain top 2000 m above the surrounding valley and

having a circular basis of 20 km in diameter.) It is quite instructive to

compare these values with figures derived from a cone model with height = j
2 ho and base-radius = X/2; the topographic correction can eas!ly be shown

to equal C = 87GPh'/X; therefore, our two models differ only by 8/72' 0.8

and consequently, the cone-model values corresponding to the figures in Table

5.1 are only 20% smaller; a very astonishing result, which both convinces

the above rule of thumb and indicates the moderate influence of remote zones.

Let us still investigate another isotropic model represented by

h(s) = m0sinws, (5.6)

centered at the computation point P; (note that h. = 0.) With (5.1) the

topographic correction is given by

sin' wC1TGph' f -snz sds ;

s=OI
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with CRyshik and Gradstetn, 1963, p, 166, No. 3.512) and w = 27/X as before,

we obtain

C G -X v , 4 (5.7)

[ which is identical to (5.5)•,

As a last model we will consider a non-isotropic wo-called "two-

dimensional" model which has a constant profile in one direction,

h(x) = hosinwx; (5.8)

F

the computation point is supposed to be locatea at x 0 0. '•,ith (5.1) the

topographic correction is given by

2fjf in2 wx dxd
C ItGphsx (5.9)• Vx"2 ý+y Y21

X=-M y=--W

Due to the symmetry of the integrand with respect to x = 0 and y o 0, C can

also be expressed by

C = 2Goh J 7 d (5.9),
f N•'tx 2 + y2

x0O y0O

The integration with respect to > is very simple and yields

_ dy1 17yy
•/x• + ' xz 2. + x• 7'

and therefore C reduces to

I I

i' i
- ~ .
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C 2 Gpho f -S' X2- dx

x0O

which differs from C5.7) only by a factor 2/v' and we obtain with w =21T/X

as above

C 2 2TGP X , \4 ho. (5.9)"

Also ftr this quite different model (note that the computation point is

located at the slope of a mountain chai~n) we observe the same dependence on

h20 and X. Therefore, we conclude that our rule of thumb

0 C = (h' /X) (5.10)

seems to be of general validity.

What is the logical consequence for the design of a digital terrain

model for the purpose of reducing gravity measurements? Observing (5.10),

the obvious answer is as follows: the terrain sampling rate must be selected

terrain-specifically; rough terrain requires higher rates, smooth terrain

lower sampling rates; it is not a good advice to keep the sampling rate

globally constant. If we are talking about a rough terrain we mean not only

small wavelengths but also high power; high-frequent terrain oscillations

with a small amplitude need not be resolved, they should be smoothed out by

an appropriate smoothing process; a mean value representation over rectangular

blocks or even a mean value reproducing smooth representation should be

favorably considered. The block size, in turn, depends strongly on the

power of the high-frequent portion of the terrain spectrum, and in addition

on the desired accuracy of the terrain correction.
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The terrain correction (5,1) can also be represented in terms of

polar coordinates (p,a)

C7 L 2 . sin dipda. (5.11)

f 10

Performing the integration with respect to the azimuth a first (for a fixed

spherical distance f), and denoting the mean square height difference (with

respect to h ) by h* 2(p),

27f

h [h(,a)- hp) da. (5.12)

the terrain correction may be written i
? s inq~d,. (~)

Observing the rapid decrease of the furction sin'p/ 0(4), expression (5.11)'

can be considerably siPplified for practical applications; with

vinV 2 sin 0Kcos/ 1

Fo- ..:nall p, (5.11)' is given by

TrGp f h*2lA,)dt. (5.11) ""

[i R ýfto
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(ýp = 105 is sufficient in any case CHay-Ford zone 0); cf. (Heiskanen

and Vening Meinesz, 1958, p. 154).) In terms of the linear distance

s = RW, above formula is written

SO

C 7TGP h* (s) ds, (5. 11)

s=O

Let us now recall the isotropic terrain model (5.4) discussed earlier.

Comparing (5.5) with (5.11)"1, we observe that our requirements can

be considerably relaxed: the model has to be such that only its mean

square value (extended over the azimuth ct; s fixed) behaves like

ho (cos 271 s-i)2, otherwise it is largely arbitrary. Consider the in-
A

tegrand of (5.5): with a constant denominator the maximum would be

attained at s = (2k+1)X/2, k = 0, 1, ..... Due to the rapidly increas-

ing denominator s2, the maximum of the composite integrand is shifted to

smaller values of s; in addition, C gets its power mainly from the re-

gion of the inegrand's first maximum; local maxima of larger s contribute

very little to the terrain effect. This is why the simple cone model

discussed above differs only little from the model (5.4) as far as the

terrain effect is concerned. Fig. 5.1 illustrates the behavior of the

integrand corresponding to model (5.4) for various wavelengths (common

ho, normalized). It is quite remarkable that these graphs, despite of

the underlying model's simplicity, agree favorably well with graphs

derived from real world topography; cf. (Mathisen, 1976); this fact

confirms once more the ho/? - law.

The practical consequences are as follows: the location of the first

maximum is strongly influenced by the variation of the topography in the

neighborhood of the computation point; therefore a very detailed

I

I•

I I I JJU • III
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1.00

0.75 X = 500 m

A = 1000 m
•/ A = 5000 m

o. o- j/
0.50

F 7
0.25 /

0.00- - --

0 5'C0 1000 1500 2000 2500

distance s(meters)

Fig. 5.1 Integrand [ho(cos s 1)/s2 for
various kavelengths X .

digital terrain model (DTM) is required in this region, unless the compu-

tation point is located at a fiat spot of the topography. The degree

of resolution of the .•M, therefore, depends on three essential factors:

d) on the varianice of the terrain surrounding the computation point P,

b) on the wavelength of the terrain surrounding P,

c, on A.e location of the first mdximum cf the integrand in (5.11)"

:, jI



59

Table (5.1) and Fig. (5.1) provide us with a rough guideline for

a proper choice of the required DTM's resolution; however, the decision

I must be made on individual circumstances.

IM
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6. THE EFFECT OF TOPOGRAPHY ON MEAN ANOMALIES

Mean free-air anomalies as defined by (2.2) can be split up into

two components: the mean Faye ,•iomaly plus a mean terrain correction.

Chapters 2 and 3 deal with the estimation of point and mean Faye anoma-

lies; chapter 5 considers essential aspects concerning the calculation

of peint terrain corrections. As a matter of fact, the effect of topo-

graphy on mean anomalies equals the mean terrain effect; its estimation

will be discussed in the sequel.

The most straightforward way of estilna-ring the mean terrain effect

is to calculate a dense grid of point terrain effects and take the

"!average. The calculation of the point terrain effect requires the

evaluation of an integral formula like (5.1), an expensive task even for

high-speed computer. Note that equation (5.1) is of "differentiation ]
type" which can be clearly seen by observing its behavior in the inner-

most zone surrounding the computation point P. The mean terrain effect

is obtained by integrating the point terrain effects. Do we really have

to suffer from the instabilities of differentiation first before we can

enjoy the stability of integration? There must be a direct and inexpen-

sive solution to the problem of mear ;'rain correction estimation which

avoids the up's and down's of differentiation + integration. (A very

similar problem is encountered in connection with the astrogeodetic

d'ftermination of the geoid: plumb-line curvature correction and ortho-

metric reduction; see Heiskanen & Moritz, 1967, pp. 200, 201.)

.i us consider the terrain correction as given by equation (5.11)'.

The m.ean terrain correction C = M(C} is obviously obtained by averaging

F I
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the point terrain correctfons within the area Aa of consideration,

ff~da(6.1)
Aa

Let us try to formulate the procedure of calculating C:

a) keep a circle with radius = •fixed;

b) keep a point P e A a fixed and make it the center of the circle;

c) calculate the mean square height differences as defined by (5.12)

for this particular circle;

d) change P and repeat (b) and (c) until Aa is covered;

e) calculate the average of all outcomes of (c);

f) change 4 and repeat (a)- (e) until [O,ipo]is covered with an appro-

priate ýO (e.g. 105);

g) perform (5.11)

In terms of a formula it can be written as

ITGTr {6ff h2da}* (6.2)
ý =o 60 ct-o

The expression {.} represents (c) - (e) and equals the variance of height

differences between two surface points, separated by a distance P, for the

individual area Aa in consideration. This variance is related to the

elevation auto-covariance function H(p) as follows:

27T

2AA- h2 dadca 2 CHO - H(,)l] , H0 H(O). (6.3)

(i)... provided Aa is sufficiently larger than •
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Replacing the spherical by planar expression, we obtain the very simple

expression

So

In the following we will evaluate this integral for various covariance

functions, the generalized Hirvonen models and the Gaussian covariance

function.

a) The classical Hirvonen model

H(s) H (6.5a)H~) 1+()

where C denotes the correlation length, yields an integral (Ryshik and

Gradstein, 1963, p. 60, No. 2.141)

Ho-11(s)

sao

and we obtain for, t~he mean terrain correction the value

Gp H (6.6a)

•) The second ilirvonen model has been discussed in Moritz (1980),

HO
H~s) ,(6.5b)

+~~)~- iaj
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where the parameter a is related to the correlation length E through
a -Va~3-

[HO H(s) ds ao

S=O

and we obtain for C the value

=.2 VT rGP - (6.6b)

c) The last Hirvonen covariance roodel (Moritz, 1980) is

Ho
H(s) (6.5c)

4

where the parameter a is related to the correlation length • through

= a(2 2'ý - 1)½. According to Ryshik and Gradstein (1963, p. 82, No.

2.268) the integral yields

H S4 H(s) ds =2 H
f a

s=o

and we obtain for C the expression

C = 4 2 -I TrGo HO (6.6c)

d) The Gaussian covariance model

Ha2?sH(s) = Hoe -as(6.5d)

V!
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I

has a correlation length V f a v 2 and yields an integral (Ryshik and

Gradstein, 1963, p. 151, No. 3.273)

00 0

szdsVI
L ~S= 0

and we obtain for the mean terrain correction the valueV
?2- M -aGp T (6.6d)

In 11 four covariance models we observe the common factor TrGp Ho.

V The model-specific multiplication factor is shown in Table 6.1.

Covariance model CO

Hirvonen (a) 7 = 3.14

Hirvonen (b) 2 = 3.46

Hirvonen (c) 4 V77 7 = 3.07

Gauss 2 7r 2. 2 = 2.95

Table 6.1 Model-specific multiplication factors,

C Co. TrGP

We notice that for all four models the mean terrain correction C varies

iin a very narrow range with variations of only 10%. Therefore, we con-

clude . the esLimation of E is only little sensitive with respect to

the model choice. We summarize:
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Thre mean t'wbi e•orrecton depend4 Unea~ty on the tevwian vawiancae

and is inure proportionaZ to the coArdA-aton tength o6 the terrain co-

variance func.ton va.id fot the con.sideAed artea. It dependl weakly on I

the type o6 the coacriance model.

This very interestirg and astonishingly simple result deserves a 4

discussion. The variance of the height differences as defined by (6.3) i
Ft

is valid for the area Ao in consideration; therefore, the terrain covari-

ance function H(s) has to be derived from topographic data in the same

limited area only. In flat areas the variance of the topography is small

and the correlation length big, resuiting in a very small mean terrain

effect as to be expected. In mountainous areas, in constrast, we observe

,r a big variance and a small correlation length, resulting in a very signi-

ficant mean terrain effect as also to be expected. How does it come

that, according to equations (6.6a-d), the mean terrain effect is vir- i
tually independent on the size cf the area Aa? The answer is simple:

the area size Ac lurks in the background and is implicitly introduced

through the definition and determination of the covariance parameters HO ,

and •. It is known from experience that the terrain variance and correla- 4

tion length can considerably change with the size of the area Aa. If Ac

increases, the correlation length will in general increase too. H. can J

attain quite large values; in mountainous areas values of Ho = 0.5 to 1

km can be observed; the correlation length of the terrain covariance func-

tion is usually much smaller than the one of the free-air anomaly covari-

ance function; particularly in mountainous areas it can be as small as a

very few kilometers, Fig. 6.1 shows lines of equal mean terrain effect

LI
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depending on the r.m.s, elevation and the correlation length { for the

Hirvonen (a) - model; Fig. 6.2 is a 3-D representation of the behavior

of (.6.6a)..

1000-

"750 -

0 500
0

ooI--

250 -

5 10 15 20

correlation length ý (km)

Fig. 6.1 Lines of equal mean terrain effect depending on
the r.m.s. variation of elevation and the
correlation length F, for the Hirvonen (a)-model.
unit: mgal
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750 • 1 0•'_

rsejeaI, 250. 5
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Fig. 6.2 Mean terrain effect (mgal) for the Hirvonen (a)
covariance model



68

7. CONCLUSIONS AND RECOMMENDATIONS

Different methods have become available for the prediction of point

and mean free-air anomalies ba-d on observeo point anomalies. By far

the most attractive, but also most expensive, tool is least-squares pre-

diction. The most general version of least-squares gravity prediction

involves the processing of gravity and elevation data simultaneously.

In this report a least-squares approach is proposed, which takes the gen-

erally observed strong linear correlation between (terrain reduced) free-

air anomalies and elevation into account in terms of two model parameters;

the method is therefore based on least-squares collocation with parameters.

The signal is basically a residual Bouguer anomaly and such is the cor-

responding covariance function. Bouguer anomalies are smooth, therefore,

the covariance function has a rather long correlation length; consequently,

the interpolation (prediction) accuracy is high. it has been shown that

a regional variation of the Bouguer anomaly causes the Bouguer factor to

decrease if a regional least-squarr idjustment is used; in addition its

estimation accuracy becr-nes very poor. The collocation solution, in con-

trasc, models th, •?,;1juer anc:-ialy field statistically and provides highly

reliable estimi:s of the Bouguer factor which turned out to be generally

quite close to its normal vie. Particularly important for free-air

anomaly predictions in mountainous areas, is the data reduction for the

influence of the topography. Various simple, but instructive, topograph-

ical models have been studied. It turned out that the mean terrain effect

• lir •'ly dependent on the variancl, and idirectly proportional to the

correlation length of the residual topography within the area of consider-

ation. Therefore, the accurdcy of itF determination depends on how good
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the estimates of the terrain variance and the terrain correlation length

are.

Summnarizing we propose the following method for mean free-air gravity

anomaly estimation:

a) Reduce gravity data for the terrain effect;

b) determ~ine an empirical covariance function and fit a model;

c) determine the correlation model parameters (mean Bouguer anomaly

and the Bou~guer factor) by least-squares collocation;

d) predict point and/or mean anomalies by least-squares collocation with

parameters;

e) add the point and/or mean terrain effect to the obtained estimateI' in order to get free-air anomalies.

k. Predictions with real world data have shown that free-air 5' x 5' anoma-

lies, even in very rough mountainous areas, can be predicted with an ac-

curacy of <± 5 mgal. using the method proposed above, provided the data

density is better than 1/10 km2 and the effect of topography has been

carefully taken into account.

Further investigation, particularly as far as the resolution of the

F digital terrain model is .-oncerned, are both useful and necessary.
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